39 research outputs found

    Towards an Uncertainty-Aware Adaptive Decision Engine for Self-Protecting Software: an POMDP-based Approach

    Full text link
    The threats posed by evolving cyberattacks have led to increased research related to software systems that can self-protect. One topic in this domain is Moving Target Defense (MTD), which changes software characteristics in the protected system to make it harder for attackers to exploit vulnerabilities. However, MTD implementation and deployment are often impacted by run-time uncertainties, and existing MTD decision-making solutions have neglected uncertainty in model parameters and lack self-adaptation. This paper aims to address this gap by proposing an approach for an uncertainty-aware and self-adaptive MTD decision engine based on Partially Observable Markov Decision Process and Bayesian Learning techniques. The proposed approach considers uncertainty in both state and model parameters; thus, it has the potential to better capture environmental variability and improve defense strategies. A preliminary study is presented to highlight the potential effectiveness and challenges of the proposed approach

    On the Road to Holistic Decision Making in Adaptive Security

    Get PDF
    Security is a critical concern in today's software systems. Besides the interconnectivity and dynamic nature of network systems, the increasing complexity in modern software systems amplifies the complexity of IT security. This fact leaves attackers one step ahead in exploiting vulnerabilities and introducing new cyberattacks. The demand for new methodologies in addressing cybersecurity is emphasized by both private and national corporations. A practical solution to dynamically manage the high complexity of IT security is adaptive security, which facilitates analysis of the system's behaviour and hence the prevention of malicious attacks in complex systems. Systems that feature adaptive security detect and mitigate security threats at runtime with little or no administrator involvement. In these systems, decisions at runtime are balanced according to quality and performance goals. This article describes the necessity of holistic decision making in such systems and paves the road to future research

    Software Engineering for Self-Adaptive Systems: A second Research Roadmap

    Get PDF
    The goal of this roadmap paper is to summarize the state of-the-art and identify research challenges when developing, deploying and managing self-adaptive software systems. Instead of dealing with a wide range of topics associated with the field, we focus on four essential topics of self-adaptation: design space for adaptive solutions, processes, from centralized to decentralized control, and practical run-time verification and validation. For each topic, we present an overview, suggest future directions, and focus on selected challenges. This paper complements and extends a previous roadmap on software engineering for self-adaptive systems published in 2009 covering a different set of topics, and reflecting in part on the previous paper. This roadmap is one of the many results of the Dagstuhl Seminar 10431 on Software Engineering for Self-Adaptive Systems, which took place in October 2010

    ReLACK: A Reliable VoIP Steganography Approach

    No full text
    corecore